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Discussion is about analysis of Cholesterol Data

Cholesterol data, n=164 subjects: cholesterol decrease plotted
versus adjusted compliance; Green curve is OLS cubic regression;
Red points indicate 5 featured subjects
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Focus on:

e [Initial comment about Post Selection Inference

e The “bagged” estimator with Cp selection, vs
a SURE mixture of polynomials.

e Confidence intervals for the predictive mean via
a direct double bootstrap



Post Selection Inference

Efron points out it is bad practice to:
(a) lookatdata

(b) choose model

(c) fit estimates using chosen model

(d) analyze [get Cls] as if pre-chosen

as Efron notes Berk, . Zhao (2013), Ann Stat, 802-813
[“PoSI”] make a similar point.

But the problem considered there is different from
that here:



Differences

“PoSI” paper Efron
1 | Inference about slopes Inference about E(Y|xx)
2 | Model algorithm not pre- Model via C,
specified
3 Fixed design Random design for covariates
4 |Conventional assumption| No assumption on residuals
on residuals

#1 is important to POSI since the error of slope
estimates does not depend on parameters

However, #2 for Efron allows narrower Cls. & It’s
suitable for bootstrapping.

#3 for Efron allows for the paired bootstrap.
So Efron implements a pairs-bootstrap and gets:



subject 1 estimates
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Boxplot of Cp boot estimates for Subject 1; B=4000 bootreps;
Red bars indicate selection proportions for Models 1-6

selected model
only 1/3 of the bootstrap replications chose Model 3
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Embarrassing because:

1. Raises issue of what is “true” target for the
bootstrap.

2. Suggests Efron’s estimate from the data may be
badly biased.

3. Calls into question the integrity of C, selection as
basis for estimation + CI.



SO
4. Efron recommends “bagging” as a way to produce
a more stable and smoother estimator, which may
yield more satisfactory estimate and bootstrap Cls.
My two main topics

A. An alternate method to directly produce an
estimate that is an average of polynomials.

B. An alternate bootstrap methodology. (Applied to
the bagged estimator, but could also apply to the
estimator in A.)



Alternate Methodology,

The SURE-weighted average of polynomials
Let v,,v,,... be the sequentially orthogonalized
versions of ¥, x°,.... (ie, v, L1, v, L 1&V, ...)

A weighted average of L.S. polynomials is

f(X) = ’}/}O + 0)1}71 + ...+ wpi}p D

120)1 20)2 22(0}7
Then
N 2 .

SURE = popSSE + 22(0)J- — 1)62 + 2(60]- — 1) yjz- :
Minimize this subject to the monotonicity (*).
This yields estimates for the weights



¢ The unconstrained minimizer of SURE is
A2
wj;uncon =1- (1 A (1/7/]' ))

e but the constraint (*) may require a PAV
operation that pools adjacent coordinates and
produces J-S shrinkage among them.

e The resultis very similar to the bagged estimator,

but not exactly the same. (It’s nearly indistinguishable
on the very benign Cholesterol data.)

10



The Double Bootstrap

This is similar to what is suggested in DiCiccio
and Efron (1996) Stat Sci, and elsewhere

But without any BCa/ABC step.

We find it to work well here, and in (the few) other simple and
multiple regression examples we’ve so far tried it on.

Here is a schematic:
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Figure 1: Two Levels of Bootstrap Conditional Mean Estimates for Observation ¢

)A/(I-A?) denotes the original bagged estimator.

The other levels are paired-bootstraps followed by bagging
estimators. Second bootstrap results are used to calibrate the first:
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e For equal- tail intervals the first level bootstrap
yields Cls of the form Lg/, .U,_g/, that putatively

cover with probability 1- 8.
e The second level calibrates (adjusts) the value of
B so that the actual coverage is estimated to be
the desired 1-o.
e The resulting Cls are equal-tail but need not be
symmetric about the point estimate.
e Two types of 95% CIs were computed
(1) ClIs for estimates of E(Y|xx) at Efron’s 5 points
(2) Parallel bands that have marginal probability

95% of covering E(Y|X).
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Cholesterol data, n=164 subjects: cholesterol decrease plotted
versus adjusted compliance; Confidence Intervals Added;
Red points indicate 5 featured subjects
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Notes:

What's labeled “single boot point estimate” is actually the bagging
estimate from the original data.

The differences here between the Cls is pretty small. This is
attributable to the well-behaved data. For less benign data the
differences can be much more notable.

Typically (but not always) the double boot CIs are wider than single
boot ones. That’s so here, but not too noticeable. (But look at the
right-most of the 5 points.)

The double boot routine is computationally intensive in its own right
and much more so because the bagged estimator itself requires 500
bootstrap samples each time it is computed; for the SURE estimator
the routine would be quite fast to compute (minutes instead of 4
hours on a parallel array).
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