Discussion of

Estimation and Accuracy After Model Selection
By Bradley Efron

Discussant: Lawrence D Brown*

Statistics Department, Wharton, Univ. of Penn. lbrown@wharton.upenn.edu

JSM, Boston, Aug. 4, 2014

* Joint author: Dan McCarthy (Univ. of Penn.)

Discussion is about analysis of Cholesterol Data

Cholesterol data, n=164 subjects: cholesterol decrease plotted versus adjusted compliance; Green curve is OLS cubic regression; Red points indicate 5 featured subjects

Focus on:

- Initial comment about **Po**st **S**election **I**nference
- The "bagged" estimator with C_p selection, vs a SURE mixture of polynomials.
- Confidence intervals for the predictive mean via a direct double bootstrap

Post Selection Inference

Efron points out it is bad practice to:

- (a) look at data
- (b) choose model
- (c) fit estimates using chosen model
- (d) analyze [get CIs] as if pre-chosen

as Efron notes Berk, ..., Zhao (2013), *Ann Stat*, 802-813 ["PoSI"] make a similar point.

But the problem considered there is different from that here:

Differences

	"PoSI" paper	Efron
1	Inference about slopes	Inference about E(Y x _k)
2	Model algorithm not pre-	Model via C _p
	specified	
3	Fixed design	Random design for covariates
4	Conventional assumption	No assumption on residuals
	on residuals	

#1 is important to POSI since the error of slope estimates does not depend on parameters

However, #2 for Efron allows narrower CIs. & It's suitable for bootstrapping.

#3 for Efron allows for the paired bootstrap. So Efron implements a pairs-bootstrap and gets:

Boxplot of Cp boot estimates for Subject 1; B=4000 bootreps; Red bars indicate selection proportions for Models 1–6

Embarrassing because:

- 1. Raises issue of what is "true" target for the bootstrap.
- 2. Suggests Efron's estimate from the data may be badly biased.
- 3. Calls into question the integrity of C_p selection as basis for estimation + CI.

SO

- 4. Efron recommends "bagging" as a way to produce a more stable and smoother estimator, which may yield more satisfactory estimate and bootstrap CIs.

 My two main topics
- A. An alternate method to directly produce an estimate that is an average of polynomials.
- B. An alternate bootstrap methodology. (Applied to the bagged estimator, but could also apply to the estimator in A.)

Alternate Methodology, The SURE-weighted average of polynomials

- Let $\vec{v}_1, \vec{v}_2, ...$ be the sequentially orthogonalized versions of $\vec{x}, \vec{x^2}, ...$ (ie, $\vec{v}_1 \perp 1, \vec{v}_2 \perp 1 \& \vec{v}_1, ...$)
- A weighted average of L.S. polynomials is

$$\hat{f}(x) = \hat{\gamma}_0 + \omega_1 \hat{\gamma}_1 + \dots + \omega_p \hat{\gamma}_p \ni$$

$$1 = \omega_1 \ge \omega_2 \ge \dots \ge \omega_p$$

(*)

• Then $SURE = popSSE + 2\sum (\omega_j - 1)\hat{\sigma}^2 + \sum (\omega_j - 1)^2 \hat{\gamma}_i^2.$

- Minimize this subject to the monotonicity (*).
- This yields estimates for the weights

• The unconstrained minimizer of SURE is

$$\omega_{j;\text{uncon}} = 1 - \left(1 \wedge \left(1/\hat{\gamma}_{j}^{2}\right)\right)$$

- but the constraint (*) may require a PAV operation that pools adjacent coordinates and produces J-S shrinkage among them.
- The result is very similar to the bagged estimator, but not exactly the same. (It's nearly indistinguishable on the very benign Cholesterol data.)

The Double Bootstrap

- This is similar to what is suggested in DiCiccio and Efron (1996) *Stat Sci*, and elsewhere
- But without any BCa/ABC step.
- We find it to work well here, and in (the few) other simple and multiple regression examples we've so far tried it on.
- Here is a schematic:

Figure 1: Two Levels of Bootstrap Conditional Mean Estimates for Observation i

 $\hat{y}(\hat{B})$ denotes the original bagged estimator.

The other levels are paired-bootstraps followed by bagging estimators. Second bootstrap results are used to calibrate the first:

- For equal- tail intervals the first level bootstrap yields CIs of the form $L_{\beta/2}$, $U_{1-\beta/2}$ that putatively cover with probability $1-\beta$.
- The second level calibrates (adjusts) the value of β so that the actual coverage is estimated to be the desired $1-\alpha$.
- The resulting CIs are equal-tail but need not be symmetric about the point estimate.
- Two types of 95% CIs were computed
- (1) CIs for estimates of $E(Y|x_k)$ at Efron's 5 points
- (2) Parallel bands that have marginal probability 95% of covering E(Y|X).

Cholesterol data, n=164 subjects: cholesterol decrease plotted versus adjusted compliance; Confidence Intervals Added; Red points indicate 5 featured subjects

Notes:

- What's labeled "single boot point estimate" is actually the bagging estimate from the original data.
- The differences here between the CIs is pretty small. This is attributable to the well-behaved data. For less benign data the differences can be much more notable.
- Typically (but not always) the double boot CIs are wider than single boot ones. That's so here, but not too noticeable. (But look at the right-most of the 5 points.)
- The double boot routine is computationally intensive in its own right and much more so because the bagged estimator itself requires 500 bootstrap samples each time it is computed; for the SURE estimator the routine would be quite fast to compute (minutes instead of 4 hours on a parallel array).